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Analysis of Microstrip Resonators of Arbitrary Shape

Krzysztof A. Michalski, Senior Member, IEEE, and Dalian Zheng, Member, IEEE

Abstract—A space-domain approach based on a mixed-poten-
tial integral equation formulation is developed for efficient
computation of complex resonant frequencies of laterally open
microstrip-patch resonators of arbitrary shape. The effects of
the substrate—which may consist of any number of planar,
possibly uniaxially anisotropic, dielectric layers—are rigor-
ously incorporated in the formulation by means of the vector
and scalar potential Green’s functions. The current distribu-
tion on the conducting patch is approximated in terms of vector
basis functions defined over triangular elements. Computed
resonant frequencies, quality factors, modal currents, and far-
field radiation patterns are presented for several microstrip
resonators. For patches of simple, regular shapes, the results
are in agreement with published data obtained by specialized
techniques, which—unlike the method presented here—are not
easily extendable to arbitrary shapes.

I. INTRODUCTION

N THE microwave frequency band, microstrip-patch

resonators of various shapes are used as antennas and
as components in integrated-circuit oscillators and filters.
These resonators have narrow bandwidths and can only
operate effectively in the vicinity of the resonance fre-
quency. Therefore, it is important in these applications to
accurately ascertain the resonance frequencies of the res-
onators. Previous rigorous analyses of microstrip reson-
ators have relied on the spectral domain integral equation
approach [1]-[5]. This technique, which depends on the
availability of Fourier-transformable expansion func-
tions, has traditionally been limited to microstrip patches
of a few simple shapes. Recently, the present authors [6]
have demonstrated that this approach is feasible for the
analysis of planar, but otherwise arbitrarily shaped mi-
crostrip structures, modeled by triangular elements. It has
been concluded, however, that—unless a breakthrough is
achieved in the acceleration of the slowly convergent dou-
ble spectral integrals that arise—the spectral domain ap-
proach is not competitive in terms of efficiency with the
state-of-the-art space domain methods, especially those
based on the mixed-potential integral equation (MPIE)
[7], [8]. The MPIE approach has first been used in the
analysis of microstrip structures by Mosig and Gardiol [9],
who applied it in conjunction with the “‘rooftop’” basis
functions [10] defined over rectangular subdomains. Al-
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though the rectangular-mesh model has successfully been
used to analyze planar microstrip structures of various
shapes [11]-[13], a triangular-element model is applica-
ble to a still wider class of geometries. This has recently
been recognized by several authors [14]-[16], who em-
ployed the MPIE formulation in conjunction with the vec-
tor basis functions defined over a triangular support [17].
In this paper, we adopt the latter approach to study lat-
erally open microstrip resonators of planar, but otherwise
arbitrary shape, embedded in a layered, possibly uniaxial
medium.

II. FORMULATION

We consider the structure of Fig. 1, where the time
variation of the electromagnetic field is assumed to be
specified by an ¢/’ factor, which is suppressed through-
out. Here, w = 2xf, where fis the (in general complex)
frequency. The free-space permeability and permittivity
are denoted by p, and ¢, respectively, and the free-space
wavenumber and characteristic impedance are given by k
= wvVuoeo and gy = Vpy/ €, respectively. The dielectric
medium in Fig. 1 is uniform and of infinite extent along
the x and y coordinates, and so is the ground plane. The
dielectric layers may be uniaxially anisotropic with the
optic axis parallel to the z axis [18, p. 745]. The nth layer
is characterized by the permittivity tensor ¢, = [I + £(»,
— Dley,, where I is the idemfactor, », = ¢, /€, is the
anisotropy ratio, and ¢, and ¢,, denote, respectively, the
transverse and longitudinal dielectric constants of the nth
layer, relative to free space. Here and throughout this pa-
per, unit vectors are distinguished by carets and dyadics
by double underlines. The patch resonator is assumed to
be planar, with negligible thickness, but its shape may be
arbitrary and is modeled by triangular finite elements, as
indicated in Fig. 1. The patch and the ground plane are
assumed to be made of a perfect electric conductor (PEC).
If desired, the effects of finite conductivity may be incor-
porated by means of the surface impedance concept [11].
Although the formulation presented here is applicable to
multi-layer and multi-patch structures, in this paper we
focus attention on the case of a single patch on a grounded
substrate of thickness 2 with, possibly, a superstrate of
thickness d.

The problem of Fig. 1 may be replaced by its equiva-
lent [19, p. 106], in which the conducting patch § has
been removed and its effect replaced by an electric surface
current with density Js. The magnetic and electric fields,
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Fig. 1. Geometry of an arbitrarily shaped microstrip patch resonator.

H and E, respectively, due to Jg, can be expressed as
poH(r) = V X A(r) (H
—E@) = joA@) + VO 2)

where A and ® denote, respectively, the vector and scalar
potentials, and r is the position vector. The vector poten-
tial is given as

A(r) = SS G* (rlr’) - Js(p") dS'’ &)

with the dyadic kernel
G (rlr) = (%% + )Gy (rlr) + 22GL(r|r)
+ G (r|r). “)

Here and throughout, primes indicate source coordinates,
r, is the projection of r on the xy-plane, and the subscript
S distinguishes vectors that are transverse to £. The scalar
potential in (2) is given as

1
o0 = ‘-_S G* |V - T dS' ()
Jw Js

where the kernel G® may be interpreted as the scalar po-
tential of a single point charge associated with a horizon-
tal Hertzian dipole [9], [20]. Using the notation

1 @
Sl flk)} = o- SO F)M Ry €)™ deyy  (6)

n=20,1,2
E= N —x)? + (v~ y), ©)

¢ =tan™" <y___— y,>
X —x
where J, is the Bessel function of order n, the elements
of the dyadic (4) can be expressed as [21]
JuGarlry = 8o{Vi |z} ®

. . I'zlz) Iz
jwGa(rlr"y = —jkono cos f&{ kl - kl
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Fig. 2. Layered dielectric medium and its transmission-line network ana-
logue.
with ny given by (9) with cos { replaced by sin {. The

scalar potential kernel G° in (5) is given as

Vilz)  Vi|z!
flez ) ,(lez )}. (10)
o P

1
-—G*(rlr) = 50{
Jj

As an aid in deriving these expressions, we have em-
ployed the transmission-line network analogue of the lay-
ered medium [18, Ch. 2], as illustrated in Fig. 2. This
network actually represents two networks (having identi-
cal configurations, but in general different propagation
constants and characteristic impedances) that arise from
the decomposition of the electromagnetic field into partial
fields that are transverse-magnetic (TM) and transverse-
electric (TE) to £ [22]-[26]. The quantities associated with
the TM and TE networks are distinguished by the super-
scripts e and h, respectively. The kernel functions in (8)-
(10) are expressed in terms of the voltage and current
transmission-line Green’s functions, V¥ and 1?, where p
stands for e or h [25]. For casy reference, the transmis-
sion-line Green’s functions pertinent to the three-layer
configuration of Fig. 1 are listed in the Appendix.

In the absence of external excitation, the tangential
component of the electric field given by (2) must vanish
on the PEC surface S, which leads to the MPIE

v
ij Ga(rlr)Js(r) dS' ~ .—SS G*(rlr) V'
s Jw Js

~Js(pH dS' =0, res. (1n

This homogeneous equation has nontrivial solutions at the
resonance frequencies of the structure, which are com-
plex, thus reflecting the loss of energy due to radiation.
A resonance frequency f may be expressed as

J
= 1 +=—
r=5{1+35)
Here, f, is the real part of fand Q is the quality factor (Q-
factor, for short), where usually @ >> 1. Once a reso-
nance frequency and the corresponding modal current dis-

tribution Jg is determined, other quantities of interest,
such as the far-zone field, can be found with little extra

12)
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effort. The latter may be easily computed from (2) if we
note that far from a localized source the contribution due
to the scalar potential may be neglected [19, p. 133]. If
we assume that the observation point is above the upper
interface (i.e., z > d), the vector potential term in (2)
can be easily evaluated by the stationary-phase method
[27]. As a result, the far field components of the electric
field in the upper half-space—which is assumed here to
be characterized by free space parameters—are found as

—jkor

Jkor

Ey (1) ~ 8¢, (P (13)
where r, 8, and ¢ are the usual spherical coordinates, and
where &y and &, are the far field pattern functions, given
as

2

ks .
80.50(,4) — ﬁ eJkOdCOSGGG.sD(’A.IZr)

: SSJsm')eW""dS' (14)
with
Pep' = (x'cose + y'sin ¢) sin 6.
Here, we have introduced
Gy (#lz) = ViWd|z)p, G,(#lz)) = cos 0¥/ (d|z)é
(15)

where the voltage Green’s functions are evaluated at the
stationary-phase point value of k, = k; sin 6. If the cover
layer is absent, we simply put in the above d = 0. We
note from (13) that, since §mk, > 0, the far-field natural
mode grows without bound as r — oo, It can be shown,
however, that when the time dependence is restored and
the requirements of causality are satisfied, this mode ex-
hibits the expected damped, oscillatory time behavior
[28].

It should be noted that the equivalent current Jg repre-
sents a vector sum of the currents J¢, and Js_ that exist,
respectively, on the top and bottom sides of the patch S
in the original problem [29]. Once Js and the resulting
magnetic field have been found, the currents on both sides
of the patch can be determined as

Js+ (p) = £2 X H(p), (16)

where r approaches § from above or from below at a lo-
cation specified by p.

res,

III. NuMERICAL METHOD

As indicated in Fig. 1, we model the microstrip patch
by triangular elements. To solve the MPIE (11), we adopt
the moment method [30] in conjunction with the vector
basis functions defined over triangular subdomains [17].
Below, we summarize this approach using an efficient no-
tation similar to that commonly used in the finite elements
literature [31].

Fig. 3. Local coordinates associated with a triangular element. The ele-
ment number superscripts have been omitted.

A. Patch Current Expansion

The nodes of each triangular element are assigned the
indices i, j, and k in the counterclockwise direction, as
illustrated in Fig. 3. Here, we adopt a local indexing
scheme, in which these indices assume the values 1, 2, or
3 in a cyclic manner. The sides of the nth triangle S, with
an area A™ are formed by three edge vectors [V, i = 1,
2, 3, with I oriented from node j to node k. The ith node
of §, is defined with respect to the global coordinate ori-
gin O by a position vector r”. The patch current distri-
bution on §, is approximated as

3
J9(p) = 2 I"AP (p)
i

=1

amn

where I{” is the total current leaving the ith edge, and
A ™ is a vector basis function defined as [17], [32], [33,
p- 4491, [34], |35]

p”

24

A" (p) = p” =1L - 1L, (19)

- Here, L, is the area coordinate associated with the ith node

[31, p. 110], and is given as

A(jz)
=
- A(n)’

3

2L =1

L,
=1

(19
where A" is the area of the triangle formed by the obser-
vation point within the nth element and its nodes with in-
dices j and k (see Fig. 3). The position vector of an ar-
bitrary point on S, may be expressed in terms of the area
coordinates as

r=r"+p”, =123 (20)
The divergence of J& is readily found as
3 I(rl)
VIR = 2o @1

Hence, in view of the equation of continuity, the charge
density associated with the current (17) is constant over
an element. When the expansions (17) and (21) are sub-
stituted into the integral equation (11), the coefficients
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I{" are constrained by the boundary conditions, which re-
quire the continuity of the normal components of Jg across
the edges shared by adjacent elements, or their vanishing
at the boundary edges of S.

B. Testing Procedure and Matrix Assembly

In the solution procedure, the current expansion func-
tions described above are substituted into the ‘‘weak
form’ of the integral equation (11), which is obtained by
“‘testing’’ it with the same basis functions as those used
to represent the current. Hence, to obtain the weak form
of (11) on, say, the mth triangular element, we take a dot
product of both sides of this equation with A{™ (I = 1,
2, 3) and integrate the result over S,,. Next, we apply a
Gauss theorem [36, p. 503] to the gradient term and—to
reduce the computational effort—use a one-point rule to
approximate the testing integrals. As a result, we obtain

ij G r™|rpd - Js(p') dS’

-2 X G*(r™|r) V5 - Js(p') dS' = 0 (22)
Jw ds

where the center of gravity of S,, is specified by the global
position vector 7, and also by the local vector p%?,
where the latter originates at the /th node of the mth ele-
ment. To determine the contribution of the current on the
nth element, we substitute in the above the expansions
(17) and (21), which leads to a system of linear equations

3
Z Z(lmn) I(n) =0,

i=1

[=1,2,3 23)

(mn)

where the impedances z;/"" are given as

1 pl—L
2" = jopl - I,E")S S G |r L) dLi dL;
0 J0

1 pl=L
g 10 || Gheri g ay
0 J0

4 (' p'H
- — S S G®(r|r" dL; dL] .
Jjow Jo Jo

Here, the integrals over S, have been expressed in terms
of the area coordinates [17]. Because the latter are related
by (19), only three distinct integrals of G2, and three dis-
tinct integrals of G? are involved in (24) as i ranges from
1 to 3. Moreover, each trio of integrals may be computed
concurrently, so that one set of values of G2 or G? is
reused in three integrals. Hence, it may be said that only
two distinct kernel integrals are required for each element
pair (m, n). These two integrals, which contribute to nine
impedance elements in (23), may be efliciently evaluated
by a numerical quadrature especially developed for tri-
angular domains [31, p. 113]. We use a seven-point rule
when the source and test elements are close to each other,

24

and four-point or one-point rules for widely separated ele- -

ment pairs. When m = n in (24), the integrands are sin-

gular and must be handled with care. In this case, we ex-
tract from them the static singular terms and integrate them
analytically using the formulas developed by Wilton et al.
[37].

As there are no unknowns associated with the boundary
edges of S, where the normal component of the surface
current vanishes, we only need to find the normal currents
I,(g=1 , N) associated with the N non-boundary
edges in the triangular mesh approximation of S. There
exists a unique mapping between the coefficients 7 on
each element and the edge currents I,, whose reference
directions are automatically specified by the order in
which the node numbers appear in the mesh data. To de-
termine I,, we must first assemble the global N X N
impedance matrix. The assembly process proceeds on the
element-by-clement basis. Hence, there are two nested
loops in the computer program, with indices m and n, each
ranging over all elements. For each pair of elements (m,
n), we compute up to nine impedances z ™, according to
(24). Each of these impedances is then added—with the
appropriate sign—to the element of the global impedance
matrix corresponding to the pair of edge currents
(7™, I”). We use the plus sign if the reference direction
of the edge current is out of the element, and minus sign
otherwise. After all element pairs are processed in this
manner, (11) is converted into a homogeneous matrix
equation, which has nontrivial solutions only at those fre-
quencies, for which the matrix determinant vanishes.
These resonance frequencies are found in the complex
frequency plane by the Miiller method [38, p. 120]. The
determinant is computed using an LU factorization of the
matrix as an intermediate step, and the non-boundary edge
currents I, are obtained by back-substitution, after one of
them has been arbitrarily set to one. These currents spec-
ify the expansion coefficients I\ for each element, which
many then be used in (17) to obtain the current density on
the resonator. If desired, the resulting modal current dis-
tribution can be renormalized in some convenient fashion.

C. Computation of Far-Field Natural Modes
Using (17)-(18) in (14), we find the contribution of the
nth element to the far field pattern functions as

3

(n) () jk()dCOs@ Z I(n){ 9.<p(f‘|z') . l/({n)

1 pl-L

1 pl-L
. lj(n) S S e]kof'P,Lli dL} dLj'}
0 Jo

- Ge,w(flzl)

(25)

where G, and G, are given by (15). The integrals in the
above, which represent Fourier transforms of the area co-
ordinates over triangular domains, can be done in closed
form [39], or they may be approximated using a low-order
numerical quadrature. Summing the individual contribu-
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tions (25) over all triangular elements, we obtain the total
pattern function of the resonator.

D. Evaluation of Spectral Integrals

The integration path of the Sommerfeld-type integrals
(6), which appear in (8)-(10), must be properly indented
around the singularities of the integrands [40], [3], [4].
These singularities include poles, which are the zeros in
the k, plane of the denominator function y? given in
(29), and——for an open structure—a pair of branch points
at k, = + ko, associated with the square root function «
= vk} — kﬁ corresponding to the upper half-space, which
we assume to have free space parameters. We note from
(12) that k, is located in the first quadrant of the complex
plane, and thus the branch points are in the first and third
quadrants. It is convenient to introduce a two-sheeted ,
Riemann surface associated with «, where the ‘‘proper’’
sheet is defined by the requirement that §m« < 0, and the
opposite holds on the other, ‘‘improper’” sheet. These
sheets are joined along a pair of branch cuts, which are
specified by

72
2Q

where we have introduced the notation k, = k, + jk; and
ki = 27f. Vugeo. These conditions deﬁne a pair of hyper-
bolae emanating from +% in the first and third quadrants
of the complex k, plane. One of these branch cuts and two
representative poles are shown in Fig. 4, which depicts
the first quadrant of the proper k, sheet. For an open struc-
ture, only a finite number of poles appear on the proper
sheet. In Fig. 4, we also plot the integration path, which
begins at the origin on the improper sheet, crosses the
first-quadrant branch cut to emerge on the proper sheet,
goes around the branch point and the poles, and proceeds
to infinity along the real axis. Owing to the fact that a part
of this path (denoted by a dashed line in Fig. 4) is on the
improper sheet, the integrals in (8)-(10) become un-
bounded as z = oo, which is consistent with the remarks
following (15). For finite z, these integrals are conver-
gent, since the integration path approaches infinity on the
proper k, sheet. It should be noted that the path shown in
Fig. 4 is equivalent to those used by other authors [40],
[3], [4], even though they employ branch cuts different
from those defined by (26) above.

The spectral integrals in (8)-(10) are evaluated on the
path shown in Fig. 4 by a composite rule based on a low-
order Gaussian quadrature, with various enhancements to
improve efficiency, such as the method of averages [9].
To speed up the convergence of these integrals, we also
subtract from the integrands their large-k, forms. The lat-
ter can be integrated in closed form and they explicitly
exhibit the source-region singularities of the correspond-
ing integrals. Since a large number of Sommerfeld inte-
grals must be computed to fill the impedance matrix at
each frequency, we also employ a table look-up scheme

kP = ky? < kg kpky = (26)

E,
k,—plane

. branch cut

integration path

k!
P
poles

Fig 4. Integration path in the complex k,-plane.

in conjunction with an interpolation method [41], [9] to
reduce the solution time. We refer the reader to the liter-
ature for more details.

IV. SAMPLE RESULTS

In this section we present sample computed results,
which serve to check the validity of the method, and also
to demonstrate its flexibility and efficiency. Since data for
comparison were not available for microstrip resonators
having irregular shapes, most of the results included here
are for circular and rectangular resonators.

The results in Figs. 5 through 7 are for a circular patch
resonator, which was modeled by 184 triangular ele-
ments, as illustrated in Fig. 6. Observe that a nonuni-
form triangular mesh was used to better represent the sin-
gular behavior of the current near the edges of the patch.
In Fig. 5 we compare the computed resonant frequency
and the Q-factor of the circular disk patch, plotted versus
the disk radius, with the corresponding measured and
computed data obtained by Itoh and Mittra [42] and by
Araki and Itoh [2], respectively. In Fig. 6(a) and (b) we
superpose on the triangular mesh the vector plots of, re-
spectively, the real and imaginary parts of the computed
current distribution on a circular patch resonator of radius

= 8 mm, on an isotropic substrate of thickness & =
1.5875 mm and ¢, = 2.65, at the dominant mode resonant
frequency f, = 6.18626 GHz. In Fig. 7 we compare the
computed dominant far-field natural mode for a circular
patch resonator on an isotropic substrate with ¢, = 2.65
and i /a = 0.0236, with the corresponding data obtained
by Araki and Itoh [2].

In Fig. 8 we show the computed normalized resonant
length L/, of a rectangular patch resonator of width W
= 0.23A\,, where A is the free-space wavelength, on a
uniaxial substrate with ¢, = 10.2, versus the substrate
thickness, for various values of ¢,. This configuration was
previously analyzed by Pozar [43] using a spectral do-
main approach, and his data are also shown in Fig. 8. The
rectangular patch was modeled by 140 triangular ele-
ments. In this case, while searching for the zeros of the
matrix determinant, we used L and the imaginary part of
f as the free parameters in the Miiller method.
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Fig. 5. Resonant frequency and Q-factor versus the radius a of a circular
patch resonator on a substrate with 7 = 1.5875 mm and ¢, = 2.65.
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Fig. 6. Vector plot of the dominant mode current density on a circular
patch resonator of radius ¢ = 8 mm on a substrate with # = 1.5875 mm
and ¢, = 2.65, (a) Real part of the current. (b) Imaginary part of the cur-
rent. -
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Fig. 7. Dominant far-field natural mode of a circular patch resonator on a
substrate with ¢, = 2.65 and h/a = 0.0236.
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Fig. 8. Normalized resonant length of a rectangular patch resonator of
width 0.23 A\, on a uniaxial substrate with ¢, = 10.2, versus the substrate
thickness, for various values of ¢,.

Finally, in Fig. 9 we plot the computed resonant fre-
quency of an equilateral triangle patch resonator with a
side length of 4 ¢cm, on a uniaxial substrate with an iso-
tropic cover layer, versus the substrate thickness, which
is taken to be equal to that of the cover, for various values
of the dielectric constants. These results illustrate the ef-
fect of the substrate anisotropy and the influence of the
cover layer. No data for comparison were available in this
case. The resonator was modeled by 144 nonuniform tri-
angular elements, with smaller elements placed near the
edges of the patch.

The formulation presented here has been implemented
in FORTRAN on a PC with an ;486 processor running at
25 MHz. The amount of computer time required to solve
a typical case is modest, considering the generality and
flexibility of the approach. For example, for the triangular
patch resonator, for which results are given in Fig. 9, the
computer time was approximately two minutes per itera-
tion of the Miiller method. With a reasonably good first.
guess, less than ten iterations were usually required to
converge to a resonant frequency (or length).
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Fig. 9. Resonant frequency of an equilateral triangle patch resonator with
a side length of 4 cm, on a uniaxial substrate with an isotropic cover layer,
versus the substrate thickness, which is taken to be equal to that of the
cover, for various values of the dielectric constants.

V. CONCLUSION

We have presented a method based on a space-domain
MPIE formulation for the study of microstrip-patch res-
onators that are planar, but have otherwise arbitrary shape.
The substrate may be uniaxially anisotropic and may con-
sist of any number of homogeneous layers. The proposed
approach, which incorporates a triangular element model
of the patch and rigorously takes into account the radia-
tion and guided wave losses, offers the flexibility and ac-
curacy that make it ideal for the studies of irregularly
shaped, single and multiple microstrip-patch resonators.
However, it may not be the most efficient technique to
use for everyday analyses of regular microstrip geom-
etries for which simpler, specialized procedures may be
available. An important application of this method will be
as an aid in the development and validation of simple,
approximate resonator models, required by computer-
aided design packages.

APPENDIX
TRANSMISSION-LINE GREEN’S FUNCTIONS

The propagation constant %, and the characteristic ad-
mittance Y of the nth section of the equivalent transmis-
sion-line network shown in Fig. 2 are given as

K; = “k%Gm - k;z)/Vna Kﬁ = Vk(z)etn - k127 (27)

Yf; _ (J)Eoefm’ YZ — ﬁ

Kn Who

We now introduce the transmission-line Green’s func-
tions V7(z|z') and I?(z|z’) as, respectively, the voltage and
the current at a point z, due to a unit-strength current
source i, located at a point z’ on the corresponding trans-
mission-line network [25]. The dependence of these
Green’s functions on &, is understood, and will be left out
for brevity. Assuming, for simplicity, that the resonator
is confined to the first two layers of the three-layer me-

(28)

dium of Fig. 1 (i.e., —h < z, z' < d), we easily find the
pertinent voltage transmission-line Green’s function as
[18, p. 29]

17 P I_}p © 5 3
4&%ﬁg,w=w+w<m
Y

ViGlz) =
where z. and z.. denote, respectively, the lesser and the
greater of z and z’, and where the subscript « stands for
1 or 2 if the corresponding variable z or z’ lies within the
first or the second layer, respectively. The other symbols
in (29) are defined as

V2 (2) = cos k7 + J % sin k% z,

Yh = — Y% cot khh (30)
V2 () = cos Kbz +j g—g sin k% z,

v = y2 Y5 — jY§ cot khd 31)

Y5 — jY§ cot khd

where Y? and Y3 are the leftward- and rightward-looking
admittances at z = 0 on the first and second transmission
line section, respectively. Once V%(z|z") has been found,
the current Green’s function /”(z|z") immediately follows
from the transmission-line equation:

Y2 d
IP(Zlz) = ——2 = przlz. 32
P(z]z") e a2 P(z]z") (32)

When the superstrate is absent, we simply set in the above
Y4 = Y5. In the case of a shielded resonator, having a
conducting plate at z = d, we put Y5 = oo. The general-
ization to an arbitrary number of dielectric layers in im-
mediate.
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