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Analysis of Microstrip Resonators of Arbitrary Shape
Krzysztof A. Michalski, Senior Member, IEEE, and Dalian Zheng, Member, IEEE

Abstract—A space-domain approach based on a mixed-poten-

tial integral equation formulation is developed for efficient

computation of complex resonant frequencies of laterally open
microstrip-patch resonators of arbitrary shape. The effects of

the substrate—which may consist of any number of planar,
possibly uniaxially anisotropic, dielectric layers—are rigor-

ously incorporated in the formulation by means of the vector

and scalar potential Green’s functions. The current distribu-

tion on the conducting patch is approximated in terms of vector
basis functions defined over triangular elements. Computed
resonant frequencies, quality factors, modal currents, and far-
field radiation patterns are presented for several microstrip
resonators. For patches of simple, regular shapes, the results
are in agreement with published data obtained by specialized
techniques, which—unlike the method presented here—are not

easily extendable to arbitrary shapes.

I. INTRODUCTION

I N THE microwave frequency band, microstrip-patch

resonators of various shapes are used as antennas and

as components in integrated-circuit oscillators and filters.

These resonators have narrow bandwidths and can only

operate effectively in the vicinity of the resonance fre-

quency. Therefore, it is important in these applications to

accurately ascertain the resonance frequencies of the res-

onators. Previous rigorous analyses of microstrip reson-

ators have relied on the spectral domain integral equation

approach [ 1]–[5]. This technique, which depends on the

availability of Fourier-transformable expansion func-

tions, has traditionally been limited to microstrip patches

of a few simple shapes. Recently, the present authors [6]

have demonstrated that this approach is feasible for the

analysis of planar, but otherwise arbitrarily shaped mi-

crostrip structures, modeled by triangular elements. It has

been concluded, however, that—unless a breakthrough is

achieved in the acceleration of the slowly convergent dou-

ble spectral integrals that arise—the spectral domain ap-

proach is not competitive in terms of efficiency with the

state-of-the-art space domain methods, especially those

based on the mixed-potential integral equation (MPIE)

[7], [8]. The MPIE approach has first been used in the

analysis of microstrip structures by Mosig and Gardiol [9],

who applied it in conjunction with the ‘ ‘rooftop” basis

functions [10] defined over rectangular subdomains. AI-
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though the rectangular-mesh model has successfully been

used to analyze planar microstrip structures of various

shapes [ 11]–[ 13], a triangular-element model is applica-

ble to a still wider class of geometries. This has recently

been recognized by several authors [14] -[16], who em-

ployed the MPIE formulation in conjunction with the vec-

tor basis functions defined over a triangular support [17].

In this paper, we adopt the latter approach to study lat-

erally open microstrip resonators of planar, but otherwise

arbitrary shape, embedded in a layered, possibly uniaxial

medium.

II. FORMULATION

We consider the structure of Fig. 1, where the time

variation of the electromagnetic field is assumed to be

specified by an eJ”t factor, which is suppressed through-

out. Here, w = 27rj where f is the (in general complex)

frequency. The free-space permeability and permittivity

are denoted by W. and 6., respectively,’ and the free-space

wavenumber and characteristic impedance are given by Ico

– u= and ~. = =, respectively. The dielectric—

medium in Fig. 1 is uniform and of infinite extent along

the x and y coordinates, and so is the ground plane. The

dielectric layers may be uniaxially anisotropic with the

optic axis parallel to the z axis [18, p. 745]. The nth layer

is characterized by the permittivity tensor g ~ = [~ + 22(v.

– l)]et., where ~ is the idemfactor, v,, = EZ,,/& is the

anisotropy ratio, ~nd et,, and eZfi denote, respectively, the

transverse and longitudinal dielectric constants of the n.th

layer, relative to free space. Here and throughout this pa-

per, unit vectors are distinguished by carets and dyadics

by double underlines. The patch resonator is assumed to

be planar, with negligible thickness, but its shape may be

arbitrary and is modeled by triangular finite elements, as

indicated in Fig. 1. The patch and the ground plane are

assumed to be made of a perfect electric conductor (PEC).

If desired, the effects of finite conductivity may be incor-

porated by means of the surface impedance concept [1 1].

Although the formulation presented here is applicable to

multi-layer and multi-patch structures, in this paper we

focus attention on the case of a single patch on a grounded

substrate of thickness h with, possibly, a superstrata of

thickness d.
The problem of Fig. 1 may be replaced by its equiva-

lent [19, p. 106], in which the conducting patch S has

been removed and its effect replaced by an electric surface

current with density Js. The magnetic and electric fields,
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Fig. 1. Geomet~of anarbitrarily shaped microstrip patch resonator.

Hand ll,respectively, dueto.l~, can be expressed as

pOll(r) = V x A(r) (1)

–E(r) = juA(r) + V@(r) (2)

where A and @ denote, respectively, the vector and scalar

potentials, and r is the position vector. The vector poten-

tial is given as

A(r) =
i

GA (rlr’) “ .l~(p’) dS’ (3)~=

with the dyadic kernel

~~ (rlr’) = (At + j$)G~(rlr’) + 2.fG~(rlr’)

+ fjG&(rlr’). (4)

Here and throughout, primes indicate source coordinates,

p is the projection of r on the xy-plane, and the subscript

S distinguishes vectors that are transverse to 1. The scalar

potential in (2) is given as

m(r) = – + ! G“(rlr’)Vj . J~(p’) d!$’ (5)
JU S

where the kernel G4 may be interpreted as the scalar po-

tential of a single point charge associated with a horizon-

tal Hertzian dipole [9], [20]. Using the notation

n=o, l,2

g = J(.T – X’y’ + (y – y’)2, (7)

()~=ta~-l Y–y’.~–x J

where J. is the Bessel function of order n, the elements

of the dyadic (4) can be expressed as [21]

jtiGfJrlr’) = So{ V~(zlz’)} (8)

{,

Ig(zlz’) 1:(212’)
jmG~(rlr’) = –jkoqo cos @I ~

P 1–~
(9)
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Fig. 2. Layered dielectric medium and its transmission-line network ana-
logue.

with G~Y given by (9) with cos t replaced by sin ~. The

scalar potential kernel Gd in (5) is given as

[

V:(zlz’) _ ~2 .1
G“(rlr’) = & ~2

Vf(zlz’)——

1
(10)

ju P P

As an aid in deriving these expressions, we have em-

ployed the transmission-line network analogue of the lay-

ered medium [18, Ch. 2], as illustrated in Fig. 2. This

network actually represents two networks (having identi-

cal configurations, but in general different propagation

constants and characteristic impedances) that arise from

the decomposition of the electromagnetic field into partial

fields that are transverse-magnetic (TM) and transverse-

electric (TE) to f [22] –[26]. The quantities associated with

the TM and TE networks are distinguished by the super-

scripts e and h, respectively. The kernel functions in (8)–

(10) are expressed in terms of the voltage and current

transmission-line Green’s functions, Vj’ and l!, where p

stands for e or h [25]. For easy reference, the transmis-

sion-line Green’s functions pertinent to the three-layer

configuration of Fig. 1 are listed in the Appendix.

In the absence of external excitation, the tangential

component of the electric field given by (2) must vanish

on the PEC surface S, which leads to the MPIE

! 7s
jti ~ G~(rlr’)Js(r’) W’ – T

!
G“(rlr’)V~

JoJ S

“ J,s(p’) CM) = O, r e S. (11)

This homogeneous equation has nontrivial solutions at the

resonance frequencies of the structure, which are com-

plex, thus reflecting the loss of energy due to radiation.

A resonance frequency ~ may be expressed as

()

f=fr 1+1
2Q

(12)

Here, fi is the real part of ~and Q is the quality factor (Q-

factor, for short), where usually Q >> 1. Once a reso-

nance frequency and the corresponding modal current dis-

tribution Js is determined, other quantities of interest,

such as the far-zone field, can be found with little extra
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effort. The latter may be easily computed from (2) if we

note that far from a localized source the contribution due

to the scalar potential may be neglected [19, p. 133]. If

we assume that the observation point is above the upper

interface (i.e., z > d), the vector potential term in (2)

can be easily evaluated by the stationary-phase method

[27]. As a result, the far field components of the electric

field in the upper half-space—which is assumed here to

be characterized by free space parameters—are found as

(13)

where r, 0, and p are the usual spherical coordinates, and

where S@and 8P are the far field pattern functions, given

as

“!~Js(p’)e
J!io?.p’ ds, (14)

with

? “ p’ = (x’cosp + y’sinp) sin O.

Here, we have introduced

G6(?Iz’) = Vf(dlz’) ~, GP(?Iz’) = COS W:(dlz’)@

(15)

where the voltage Green’s functions are evaluated at the

stationary-phase point value of kP = k. sin 0. If the cover

layer is absent, we simply put in the above d = O. We

note from (13) that, since $mko > 0, the far-field natural

mode grows without bound as r ~ IXI. It can be shown,

however, that when the time dependence is restored and

the requirements of causality are satisfied, this mode ex-

hibits the expected damped, oscillatory time behavior

[28].

It should be noted that the equivalent current J~ repre-

sents a vector sum of the currents Js+ and Js– that exist,

respectively, on the top and bottom sides of the patch S

in the original problem [29]. Once Js and the resulting

magnetic field have been found, the currents on both sides

,of the patch can be determined as

Js+(p) = & x H(r), rES+ (16)—

where r approaches S from above or from below at a lo-

cation specified by p.

III. NUMERICAL METHOD

As indicated in Fig. 1, we model the microstrip patch

by triangular elements. To solve theMPIE(11), we adopt

the moment method [30] in conjunction with the vector

basis functions defined over triangular subdomains [17].

Below, we summarize this approach using an efficient no-

tation similar to that commonly used in the finite elements

literature [31].

k

tj

i

v“Tj Ik

o

Fig. 3. Local coordinates associated with a triangular element. The ele-
ment number superscripts have been omitted.

A. Patch Current Expansion

The nodes of each triangular element are assigned the

indices i, j, and k in the counterclockwise direction, as

illustrated in Fig. 3. Here, we adopt a local indexing

scheme, in which these indices assume the values 1, 2, or

3 in a cyclic manner. The sides of the nth triangle S. with

an area A(’) are formed by three edge vectors l!), i = 1,

2, 3, with 1$) oriented from nodej to node k. The ith node

of S. is defined with respect to the global coordinate ori-

gin 0 by a position vector r~). The patch current distri-

bution on S. is approximated as

Jr)(p) = i I~)A~)(p) (17)
1=1

where If) is the total current leaving the ith edge, and

A ~) is a vector basis function defined as [17], [32], [33,
p. 449], [34], [35]

Here, L, is the area coordinate associated with the ith node

[31, p. 110], and is given as

A~) 3

Ll=~t ,~lL{=l (19)

where A~) is the area of the triangle formed by the obser-

vation point within the nth element and its nodes with in-

dices j and k (see Fig. 3). The position vector of an ar-

bitrary point on S. may be expressed in terms of the area

coordinates as

r = r(n)
1

+ py), i=l,2,3, (20)

The divergence of J!) is readily found as

(21)

Hence, in view of the equation of continuity, the charge

density associated with the current (17) is constant over

an element. When the expansions (17) and (21) are sub-

stituted into the integral equation (11 ), the coefficients
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1~) are constrained by the boundary conditions, which re-

quire the continuity of the normal components of J~ across

the edges shared by adjacent elements, or their vanishing

at the boundary edges of S.

B. Testing Procedure and Matrix Assembly

In the solution procedure, the current expansion func-

tions described above are substituted into the “weak

form” of the integral equation (11), which is obtained by

“testing ‘‘ it with the same basis functions as those used

to represent the current. Hence, to obtain the weak form

of ( 11) on, say, the rnth triangular element, we take a dot

product of both sides of this equation with A fm) (1 = 1,

2, 3) and integrate the result over Sm. Next, we apply a

Gauss theorem [36, p. 503] to the gradient term and—to

reduce the computational effort-use a one-point rule to

approximate the testing integrals. As a result, we obtain

Js

2—
-!

G“(r~)lr’)Vj . .l~(p’) dS’ = O (22)
jti s

where the center of gravity of S~ is specified by the global

position vector r~), and also by the local vector p$),

where the latter originates at the 1th node of the mth ele-

ment. To determine the contribution of the current on the

nth element, we substitute in the above the expansions

(17) and (21), which leads to a system of linear equations

; ~jy)]y) = (), 1 =1,2,3 (23)
inl

‘m”) are given aswhere the impedances z ~i

Here, the integrals over S. have been expressed in terms

of the area coordinates [17]. Because the latter are related

by (19), only three distinct integrals of G:, and three dis-

tinct integrals of Go are involved in (24) as i ranges from

1 to 3. Moreover, each trio of integrals may be computed

concurrently, so that one set of values of GA or Go is

reused in three integrals. Hence, it may be said that only

two distinct kernel integrals are required for each element

pair (m, n). These two integrals, which contribute to nine

impedance elements in (23), may be efficiently evaluated
by a numerical quadrature especially developed for tri-

angular domains [31, p. 113]. We use a seven-point rule

when the source and test elements are close to each other,

and four-point or one-point rules for widely separated ele-

ment pairs. When m = n in (24), the integrands are sin-
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gular and must be handled with care. In this case, we ex-

tract from them the static singular terms and integrate them

analytically using the formulas developed by Wilton et al.

[37] .
As there are no unknowns associated with the boundary

edges of S, where the normal component of the surface

current vanishes, we only need to find the normal currents

Zq(q= l,”””, N) associated with the N non-boundary

edges in the triangular mesh approximation of S. There

exists a unique mapping between the coefficients l!) on

each element and the edge currents 1~, whose reference

directions are automatically specified by the order in

which the node numbers appear in the mesh data. To de-

termine 1~, we must first assemble the global N x N

impedance matrix. The assembly process proceeds on the

element-by-element basis. Hence, there are two nested

loops in the computer program, with indices m and n, each

ranging over all elements. For each pair of elements (m,

n), we compute up to nine impedances z li‘m”), according to

(24). Each of these impedances is then added–with the

appropriate sign—to the element of the global impedance

matrix corresponding to the pair of edge currents

(lY), i!)). We use the plus sign if the reference direction

of the edge current is out of the element, and minus sign

otherwise. After all element pairs are processed in this

manner, (11) is converted into a homogeneous matrix

equation, which has nontrivial solutions only at those fre-

quencies, for which the matrix determinant vanishes.

These resonance frequencies are found in the complex

frequency plane by the Muller method [38, p. 120]. The

determinant is computed using an LU factorization of the

matrix as an intermediate step, and the non-boundary edge

currents 1~ are obtained by back-substitution, after one of

them has been arbitrarily set to one. These currents spec-

ify the expansion coefficients l!) for each element, which

many then be used in (17) to obtain the current density on

the resonator. If desired, the resulting modal current dis-

tribution can be renormalized in some convenient fashion.

C. Computation of Far-Field Natural Modes

Using (17)-(1 8) in (14), we find the contribution of the

nth element to the far field pattern functions as

lp

PI PI–L;

H eJ’op‘ P’ LJ’ dL~ dL; – G8,~(?IZ ‘).
00

I

H

l–L;

. qn) eJ~Of P’ L; &l~ dL:

1

(25)
00

where G@and GP are given by (15). The integrals in the

above, which represent Fourier transforms of the area co-

ordinates over triangular domains, can be done in closed

form [39], or they maybe approximated using a low-order

numerical quadrature. Summing the individual contribu-
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tions (25) over all triangular elements, we obtain the total

pattern function of the resonator.

D. Evaluation of Spectral Integrals

The integration path of the Sommerfeld-type integrals

(6), which appear in (8)-(10), must be properly indented

around the singularities of the integrands [40], [3], [4].

These singularities include poles, which are~he zeros in

the k. plane of the denominator function Yp given in

(29), and–for an open structure-a pair of branch points

at kP = ~ ko, associated with the square root function K

= d- corresponding to the upper half-space, which

we assume to have free space parameters. We note from

(12) that k. is located in the first quadrant of the complex

plane, and thus the branch points are in the first and third

quadrants. It is convenient to introduce a two-sheeted kp

Riemann surface associated with K, where the “proper”

sheet is defined by the requirement that &zK < 0, and the

opposite holds on the other, ‘ ‘improper” sheet. These

sheets are joined along a pair of branch cuts, which are

specified by

(26)

where we have introduced the notation kP = k; + jk~ and

k~ = 2~f, 6. These conditions define a pair of hyper-

bola emanating from ~ k. in the first and third quadrants

of the complex k. plane. One of these branch cuts and two

representative poles are shown in Fig. 4, which depicts

the first quadrant of the proper kP sheet. For an open struc-

ture, only a finite number of poles appear on the proper

sheet. In Fig. 4, we also plot the integration path, which

begins at the origin on the improper sheet, crosses the

first-quadrant branch cut to emerge on the proper sheet,

goes around the branch point and the poles, and proceeds

to infinity along the real axis. Owing to the fact that a part

of this path (denoted by a dashed line in Fig. 4) is on the

improper sheet, the integrals in (8)–( 10) become un-

bounded as z + co, which is consistent with the remarks

following (15). For finite Z, these integrals are conver-

gent, since the integration path approaches infinity on the

proper kP sheet. It should be noted that the path shown in

Fig. 4 is equivalent to those used by other authors [40],

[3], [4], even though they employ branch cuts different

from those defined by (26) above.

The spectral integrals in (8)-(10) are evaluated on the

path shown in Fig. 4 by a composite rule based on a low-

order Gaussian quadrature, with various enhancements to

improve efficiency, such as the method of averages [9].

To speed up the convergence of these integrals, we also

subtract from the integrands their large-kO forms. The lat-

ter can be integrated in closed form and they explicitly

exhibit the source-region singularities of the correspond-

ing integrals. Since a large number of Sommerfeld inte-

grals must be computed to fill the impedance matrix at

each frequency, we also employ a table look-up scheme

1
kp–plane

~ branch cut

\

,,&egrationpat;

I
>

p&es

Fig 4. Integration path in the complex kO-plane.

in conjunction with an interpolation method [41], [9] to

reduce the solution time. We refer the reader to the liter-

ature for more details.

IV. SAMPLE RESULTS

In this section we present sample computed results,

which serve to check the validity of the method, and also

to demonstrate its flexibility and efficiency. Since data for

comparison were not available for microstrip resonators

having irregular shapes, most of the results included here

are for circular and rectangular resonators.

The results in Figs. 5 through 7 are for a circular patch

resonator, which was modeled by 184 triangular ele-

ments, as illustrated in Fig. 6. Observe that a nonuni~

form triangular mesh was used to better represent the sin-

gular behavior of the current near the edges of the patch.

In Fig. 5 we compare the computed resonant frequency

and the Q-factor of the circular disk patch, plotted versus

the disk radius, with the corresponding measured and

computed data obtained by Itoh and Mittra [42] and by

Araki and Itoh [2], respectively. In Fig. 6(a) and (b) we

superpose on the triangular mesh the vector plots of, re-

spectively, the real and imaginary parts of the computed

current distribution on a circular patch resonator of radius

a = 8 mm, on an isotropic substrate of thickness h =

1.5875 mm and ~, = 2.65, at the dominant mode resonant

frequency f, = 6.18626 GHz. In Fig. 7 we compare the

computed dominant far-field natural mode for a circular

patch resonator on an isotropic substrate with .s, = 2.65

and h/a = 0.0236, with the corresponding data obtained
by Araki and Itoh [2].

In Fig. 8 we show the computed normalized resonant

length L/A o of a rectangular patch resonator of width W

– 0.23X o, where ho is the free-space wavelength, on a—

uniaxial substrate with ~Z = 10.2, versus the substrate

thickness, for various values of ~,. This configuration was

previously analyzed by Pozar [43] using a spectral do-

main approach, and his data are also shown in Fig. 8. The

rectangular patch was modeled by 140 triangular ele-

ments. In this case, while searching for the zeros of the

matrix determinant, we used L and the imaginary part of

~ as the free parameters in the Miiller method.
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Fig. 5. Resonant frequency and Q-factor versus the radius a of a circular
patch resonator on a substrate with h = 1.5875 mm and c, = 2.65,

MAX. VALUE = 1.45 A/m
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MAX. VALUE = 1.46 A/m

(b)

Fig. 6. Vector plot of the dominant mode current density on a circular

patch resonator of radius a = 8 mm on a substrate with h = 1.5875 mm
and c, = 2.65, (a) Real part of the current. (b) Imaginary part of the cur-
rent.
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Fig. 7, Dominant far-field natural mode of a circular patch resonator on a

substrate with c, = 2.65 and h/u = 0.0236.
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Fig. 8. Normalized resonant length of a rectangular patch resonator of

width 0.23 ho on a uniaxial substrate with e, = 10.2, versus the substrate

thickness, for various values of e,.

Finally, in Fig. 9 we plot the computed resonant fre-

quency of an equilateral triangle patch resonator with a

side length of 4 cm, on a uniaxial substrate with an iso-

tropic cover layer, versus the substrate thickness, which

is taken to be equal to that of the cover, for various values

of the dielectric constants. These results illustrate the ef-

fect of the substrate anisotropy and the influence of the

cover layer. No data for comparison were available in this

case. The resonator was modeled by 144 nonuniform tri-

angular elements, with smaller elements placed near the

edges of the patch.

The formulation presented here has been implemented

in FORTRAN ort a PC with an i486 processor running at

25 MHz. The amount of computer time required to solve

a typical case is modest, considering the generality and

flexibility of the approach. For example, for the triangular

patch resonator, for which results are given in Fig. 9, the

computer time was approximately two minutes per itera-

tion of the Muller method. With a reasonably good first,

guess, less than ten iterations were usually required to

converge to a resonant frequency (or length).
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Fig. 9. Resonant frequency of an equdateral triangle patch resonator with

a side length of 4 cm, on a uniaxlal substrate with an isotropic cover layer.
versus the substrate thickness. which is taken to be equal to that of the
cover, for various values of the dielectric constants.

V. CONCLUSION

We have presented a method based on a space-domain

MPIE formulation for the study of microstrip-patch res-

onators that are planar, but have otherwise arbitrary shape.

The substrate may be uniaxially anisotropic and may con-

sist of any number of homogeneous layers. The proposed

approach, which incorporates a triangular element model

of the patch and rigorously takes into account the radia-

tion and guided wave losses, offers the flexibility and ac-

curacy that make it ideal for the studies of irregularly

shaped, single and multiple microstrip-patch resonators.

However, it may not be the most efficient technique to

use for everyday analyses of regular microstrip geom-

etries for which simpler, specialized procedures may be

available. An important application of this method will be

as an aid in the development and validation of simple,

approximate resonator models, required by computer-

aided design packages.

APPENDIX

TRANSMISSION-LINE GREEN’S FUNCTIONS

The propagation constant K; and the characteristic ad-

mittance Y: of the nth section of the equivalent transmis-

sion-line network shown in Fig. 2 are given as

K : = ~k:q. – k:/v., K; = q (27)

(’q) E*n
y; =

K;
—, Y: = — (28)

K: cd/Lo “

We now introduce the transmission-line Green’s func-

tions V~(zlz’) and Zf’(ZIZ’) as, respectively, the voltage and

the current at a point z, due to a unit-strength current

source i, located at a point Z’ on the corresponding trans-

mission-line network [25]. The dependence of these

Green’s functions on kP is understood, and will be left out

for brevity. Assuming, for simplicity, that the resonator

is confined to the first two layers of the three-layer me-

dium of Fig. 1 (i. e., –h < Z, Z’ < d), we easily find the

pertinent voltage transmission-line Green’s function as

[18, p. 29]

where Z< and z> denote, respectively, the lesser and the

greater of z and z’, and where the subscript a stands for

1 or 2 if the corresponding variable z or z’ lies within the

first or the second layer, respectively. The other symbols

in (29) are defined as

?$’.~:(z)= COSK:7, + j~ SU3 K:Z,

o!

(31)

where Y? and Y; are the Ieftward- and rightward-looking

admittances at z = O on the first and second transmission

line section, respectively. Once V~(zlz’) has been found,

the current Green’s function Z;(Z Iz’) immediately follows

from the transmission-line equation:

(32)

When the superstrata is absent, we simply set in the above

Y$ = Y;. In the case of a shielded resonator, having a

conducting plate at z = d, we put Y$ = m. The general-

ization to an arbitrary number of dielectric layers in im-

mediate.
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